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Multistage Kondo effect in a multiterminal geometry: A modular quantum interferometer
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Quantum systems characterized by an interplay between several resonance scattering channels demonstrate
very rich physics. To illustrate it we consider a multistage Kondo effect in nanodevices as a paradigmatic model
for a multimode resonance scattering. We show that the channel crosstalk results in a destructive interference
between the modes. This interplay can be controlled by manipulating the tunneling junctions in the multilevel and
multiterminal geometry. We present a full-fledged theory of the multistage Kondo effect at the strong-coupling
Fermi-liquid fixed point and discuss the influence of quantum interference effects to the quantum transport
observables.
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Introduction. The exchange coupling between a localized
spin and conduction electrons at low temperature gives rise
to the Kondo screening phenomenon [1–3]. This phenomenon
has been extensively studied over decades and often serves as
a test bed of strongly correlated physics [4]. Depending on
the size of the localized spin S and the number of conduction
channels K, the ground state of the system falls into one of
three classes, often referred as fully screened (K = 2S), un-
derscreened (K < 2S), and overscreened (K > 2S) cases [5].
Among them, the fully screened and underscreened Kondo
effects are completely described by a local Fermi-liquid (FL)
theory [2]. Recently, remarkable progress was achieved in
controllable realizations of various fully screened Kondo phe-
nomena in nanostructures [6,7], further fuelling the continued
interests in this field. With the two-stage Kondo effect being
now a subject of experimental studies, it is now a question
if more general multiterminal setups can contain principally
new and richer physics in comparison to the currently realized
ones.

The fully screened Kondo effect, although described by FL
theory, possesses several exotic properties beyond its trivial
generalization of a single channel, corresponding to S = 1/2
and K = 1 [4,8]. The S = 1/2 Kondo effect is unlikely to
be sufficient for the complete description of the physics of a
magnetic impurity in a nonmagnetic host since the truncation
of the impurity spectrum to one level is not possible [9].
Thus, the consistent description requires the consideration of
several orbitals of conduction electrons K > 1 which interact
with the higher-spin S > 1/2 of the localized magnetic impu-
rity [10–12]. The recent experiment [7] has further shed light
on the relevance of high-spin Kondo effects in nanostructures.
In addition, with the rapid progress of semiconductor quantum
dot technologies, the understanding and control over the high-
spin state properties have been quickly expanding in recent
years with the ambition of using high-spin states for quantum
information processing [13].

The prototypical example of multichannel fully screened
Kondo effects corresponds to the case of S = 1 impurity
coupled to K = 2 conduction channels. It is well known that
the two-terminal (2T) setup offers, as maximum, two distinct
channels built as the linear combinations (symmetric and an-
tisymmetric) of electron states in the left (L) and right (R)
terminal. These channels will be referred to without loss of
generality as even and odd channels, respectively [14]. Based
on the ways of how to realize K = 2, two different cases of the
S = 1 Kondo effect emerge. The first case corresponds to a 2T
realization with an explicit coupling between the even and odd
channels in order to have K = 2. The other case is achieved
by using capacitively coupled four terminals (two pairs of left
and right leads) to provide two Kondo channels (one channel
from each pair of terminals) necessary for the screening of the
S = 1 impurity [15–20]. While the strong-coupling regime
of the former case results in completely destructive interfer-
ence [18], the latter one allows us to have fully constructive
interferences [15]. These two cases are commonly referred
to as series and parallel configurations of two-stage Kondo
effects and are detailed in Fig. 1 (top). The series configuration
results in completely destructive interference due to the com-
petition between two Kondo channels, both being at resonant
scattering (even and odd channels characterized by respective
Kondo temperatures T e

K and T o
K ). This configuration is known

to possess nonmonotonic conductance [Fig. 1 (bottom)]—
a benchmark property for observations of two-stage Kondo
(2SK) effects [9].

Multi (N > 2)-terminal nanodevices have attracted great
attention from both theoretical and experimental communities
for their potential use in nanotechnologies [21–24]. In addi-
tion, probing several hallmarks of strongly correlated electron
systems, such as the Kondo density of states, requires a setup
beyond 2T [25]. Likewise, the experimental detection of Han-
bury Brown–Twiss (HBT) correlations requires a minimal
setup of 3T geometry [26]. Moreover, certain classes of Kondo
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FIG. 1. Top: The schematic representation of three-channel S =
3/2 Kondo setups studied in this Letter. (a) The series configuration
exhibiting 3SK effects via three interfering channels, (b) the capac-
itively coupled system forming a parallel configuration for S = 3/2
Kondo effects with decoupled resonant channels, and (c) a hybrid
Kondo setup allowing for the study of the interplay between mul-
tistage and single-stage Kondo effects (see text for details). Bottom:
Cartoon for the schematic dependence of the differential conductance
on a magnetic field for (a)–(c) setups. Blue “ascending” modular
blocks denote different stages of Kondo screening. Red “descending”
modular blocks stand for effects of destructive interference. Yellow
and green modular blocks are used to highlight the nonmonotonicity.

effects, such as the topological Kondo effects, are intrinsi-
cally multiterminal effects [27]. Interestingly, the physics of
the S = 1/2 Kondo impurity coupled to N terminals can
be reached by mapping it to the corresponding two-terminal
situation since only the even channel is coupled to the im-
purity [28]. In contrast, the N-terminal Kondo effect with
S = N/2 exhibiting a fully screened ground state couples all
N = K conduction modes to the impurity degrees of freedom,
resulting in multiresonant Kondo screening phenomena [18].

We now turn our attention to the simplest situation of
S = 3/2 and K = 3. While the corresponding parallel con-
figuration needs six terminals, the series setup requires three
terminals (3T). In addition, it is evident that the higher-spin
parallel configuration is a trivial generalization of the corre-
sponding S = 1/2 situation [17]. Our focus would thus be on
the series configuration where the nontrivial interplay between
three Kondo channels provides far richer physics over the
widely studied two-stage Kondo effects. In this case, one sym-
metric mode (e) and two modes orthogonal to the even mode
(o1 and o2) compete with each other to screen the localized
spin S = 3/2. These three channels are characterized by three
Kondo temperatures which can be tuned to satisfy a certain
hierarchy T e

K � T o1
K � T o2

K (see below). The fully screened
Kondo ground state, the Kondo singlet, would then result from
three different stages of screening S = 3/2 → 1 → 1/2 →
0. We refer to this phenomenon as the three-stage Kondo
(3SK) effect and concentrate our work on the development
of low-energy FL theory of transport through the 3SK effect.

Formulation of problem. We consider a multilevel quantum
impurity (dot) with an effective spin S coupled to N external

terminals. The high-spin state of the dot is achieved by the
Hund’s coupling (see Ref. [29] for details) in the presence of
an external Zeeman field B. This system is represented by the
generic Anderson model [30,31]

H =
∑
kασ

(εk + εZ
σ )C†

αkσ
Cαkσ +

∑
αkiσ

tαiC
†
αkσ

diσ + H.c.

+
∑

iσ

(εi + εZ
σ )d†

iσ diσ + EcN̂ 2 − IŜ2, (1)

where Cαkσ annihilates an electron at the terminal α from the
momentum state k with spin σ (=↑,↓) and εk = εk − μ is the
energy of conduction electrons with respect to the chemical
potential μ. The electron in the ith orbital of the quantum dot
with energy εi + εZ

σ (εZ
σ = −σB/2) is described by the opera-

tor diσ such that N̂ = ∑
iσ d†

iσ diσ represents the total number
of electrons in the dot. The exchange integral accounting for
the Hund’s rule is represented by I, Ec is the charging energy
such that I � Ec, and tαi are the tunneling matrix elements
(for details, see Refs. [32–34]).

Achieving multiple resonant Kondo channels. As the rele-
vant case of the 3SK effects, we concentrate our discussion
on the particular case of a three-level impurity (i = 1, 2, 3)
tunnel-coupled to three external leads: left (L), middle (M),
and right (R) (see Fig. 1). Assuming a total of three electrons,
the presence of Hund’s coupling results in the quartet config-
uration of the impurity possessing an effective spin S = 3/2.
We note that the spin-3/2 quartet state is well separated from
the corresponding spin-1/2 doublets [see Supplemental Mate-
rial (SM) [35] for details]. We then apply the Schrieffer-Wolff
transformation [36] to Eq. (1) which eliminates the charge
fluctuations between the orbitals resulting in the effective
Hamiltonian as

H = H0 + 1

2

3∑
α,α′=1

∑
kσ,k′σ ′

Jαα′S · C†
αkσ

τσσ ′Cα′k′σ ′ , (2)

with H0 = ∑
αkσ εk C†

αkσ
Cαkσ and τσσ ′ being the Pauli matrix.

The 3 × 3 Hermitian matrix J of exchange couplings Jαα′

can be expressed in terms of the size of the effective spin S ,
charging energy Ec, and nine complex tunneling elements tαi

such that

Jαα′ = 2

SEc

3∑
i=1

t∗
αitα′i. (3)

The 3 × 3 matrix J possesses at most three nonzero eigenval-
ues, each representing distinct conduction channels [37], let
us say J1,2,3. To achieve J1,2,3 > 0, the matrix J must possess
the following three invariants M1,2,3 such that

M1 = Tr J =
3∑

i=1

Ji > 0, M2 = Det J =
3∏

i=1

Ji > 0,

M3 = 1

2
[(Tr J )2−Tr J 2] = J1J2+J2J3+J1J3 > 0,

where “Tr” and “Det” stand for the trace and determinant,
respectively. The simplest case arises when all tαi are tuned to
be equal where J permits only one eigenvalue, with the other
two being zero since for this case M2 = 0. The resulting situa-
tion describes the single-channel underscreened (S > K = 1)
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FIG. 2. The phase tunable eigenvalues of exchange matrix J
providing three distinct Kondo channels (see text for details).

Kondo effects characterized by the channel corresponding to
the single nonzero eigenvalue of J .

The complex tunneling parameters tαi = |tαi|eiϕαi provide a
very large parameter space and hence various J matrices can
be formed. For a simple demonstration of the 3SK effect, one
needs all three eigenvalues of J to be nonzero and positive
definite since these eigenvalues will provide independent con-
duction channels for the Kondo screening. One of the simplest
ways to achieve such a goal is to consider a single phase
ϕ �= 0 keeping all tunneling amplitudes the same, satisfying
the condition M1,2,3 > 0. To this end, we chose a prototypical
realization such that the tunneling elements are parametrized
as [35]

tL1 = |t |eiϕ, tL2 = |t |, tL3 = |t |e−iϕ,

tM1 = |t |e−iϕ, tM2 = |t |, tM3 = |t |eiϕ,

tR1 = tR2 = tR3 = |t |. (4)

This choice results in three eigenvalues J1,2,3 of the J matrix
which can be tuned with phase ϕ,

J1,3 = J0

2
[7+2 cos 2ϕ ±

√
32 cos ϕ + (5 + 2 cos 2ϕ)2],

J2 = 4J0 sin2 ϕ, (5)

where we denoted J0 = 2|t |2
SEc

. It is seen from the above
equation that ϕ = 0 results in J1 > 0 with J2,3 = 0. Thus,
by tuning the phase ϕ ∈ [0, 2π ), one can explicitly achieve
the desirable condition J1,2,3 > 0 which gives three distinct
Kondo channels, see Fig. 2. In addition, tuning ϕ further of-
fers some interesting points where two eigenvalues are equal,
as well as all of them being equal, keeping the condition
J1,2,3 �= 0. This provides a viable way of manipulating the
strength of the conduction channels. In addition, as detailed
in SM [35], J1,2,3 > 0 can be achieved even with ϕ = 0 (the
real tunneling elements) by considering asymmetry among the
tunneling amplitudes. Therefore, in the following discussion

we assume without loss of generality that all three eigenvalues
of the matrix J are positive and hence all scattering channels
interact with the quantum impurity.

Rotation of electron states in the leads. The usual situation
of 2T geometry always suggests the rotation of electron states
given by the Glazman-Raikh (GR) transformation [14] [for
symmetric coupling it writes Ce ≡ (CL + CR)/

√
2 and Co ≡

(CL − CR)/
√

2], which paves the way of writing Hamiltonian
Eq. (2) in diagonal form and hence resulting in a Kondo
Hamiltonian. Increasing the number of terminals N but keep-
ing only one nonzero eigenvalue of J is the trivial case since
only the symmetric mode Ce = ∑

α Cα/
√

N would be coupled
to the impurity, with all other N − 1 modes orthogonal to Ce

remaining completely decoupled. Therefore for N-terminal
geometry with all eigenvalues of J being nonzero, a trans-
formation similar to GR is more involved. Interestingly, the
remaining N − 1 rotated states which are orthogonal to Ce can
be formed by using the N − 1 Cartan generators of the SU(N )
group [8,23,38]. For the particular case of 3T geometry, the
remaining two rotated states are formed by using the genera-
tors of the Cartan basis of the SU(3) representation, namely
λ3/

√
2 and λ8/

√
2.

A naive rotation transformation constructed from Ce,
Co1 ↔ λ3/

√
2, and Co2 ↔ λ8/

√
2 [39],⎛

⎜⎝
Ce

Co1

Co2

⎞
⎟⎠ = Uλ

⎛
⎜⎝

CL

CM

CR

⎞
⎟⎠, Uλ =

⎛
⎜⎜⎝

1√
3

1√
3

1√
3

− 1√
2

1√
2

0

− 1√
6

− 1√
6

2√
6

⎞
⎟⎟⎠, (6)

would neither contain the coupling asymmetry |tαi| �= |t |α′i′

nor the information about the tunneling phase ϕ �= 0. We thus
find a very general transformation U (similar to GR rotation
in 2T geometry) for 3T Kondo geometry which provides all
eigenvalues of J to be positive nonzeros J1,2,3 > 0 by ac-
counting for the tunneling asymmetry and phase. We relegate
the discussion of this general transformation to the SM [35]
and concentrate our discussion here to the case of having the
same tunneling amplitudes |t |αi but with ϕ �= 0. As detailed
in the SM, the most general transformation accounting for the
choice of Eq. (4) reads

U [C(ϕ)] = 2√
8 + (C + 2)2

× U[C(ϕ)], (7)

with

U =

⎛
⎜⎜⎝

1 1 1+C
2

−
√

3
2

√
1+ C

12 (C+4)
√

3
2

√
1+ C

12 (C+4) 0

− 1√
2

(
1+C

2

) − 1√
2

(
1+C

2

) √
2

⎞
⎟⎟⎠,

C(ϕ) =
√

11−4 cos(ϕ)+2 cos(2ϕ)−1−2 cos(ϕ), C(0) = 0.

With the help of the unitary matrix U Eq. (7) we write the
Hamiltonian Eq. (2) in diagonal form. The resulting Kondo
Hamiltonian reads

HK =
∑

a

(
H a

0 + Jasa · S)
, (8)

where a = e, o1, o2 are the channel indices and sa stands for
the spin-density operator in the new basis a. In addition, three
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nonzero eigenvalues (for ϕ �= 0) of J have been relabeled as
J1 = Je, J2 = Jo1, and J3 = Jo2.

Kondo temperatures. Going beyond the second order of
the Schrieffer-Wolff transformation results in an interaction
among difference channels which reads [18]

Hch−int = −
∑

a,b:a �=b

Jabsa · sb. (9)

While the amplitude of Ja (as seen earlier) scales with
∼|t |2/Ec, the ferromagnetic coupling among different chan-
nels Jab scales as ∼JaJb/Ec [18]. Therefore, Eq. (9) becomes
irrelevant in the weak-coupling regime, which allows us to
define three distinct Kondo temperatures characterizing three
different conduction channels,

T a
K = D exp

[
− 1

2νFJa

]
, (10)

where D is a bandwidth and νF is the three-dimensional
electron density of states in the leads. Since Ja(ϕ) are tuned
through ϕ, we may express the Kondo temperature as T a

K ≡
T a

K (ϕ), resulting in the least exotic situation T e
K > T o1

K > T o2
K .

We note that the last condition has been chosen just for
the sake of simplicity, and arbitrary relations among Kondo
temperatures can be considered straightforwardly with Ja pre-
sented earlier. As explained above, we consider the 3T Kondo
setup in the presence of the Zeeman field B. The case with
B > T e

K results in the weak-coupling regime of the problem.
Decreasing B below T e

K subsequently results in two interme-
diate states T o2

K < T o1
K < B < T e

K and T o2
K < B < T o1

K < T e
K.

Further decreasing of B finally reaches the strong-coupling
regime B < T o2

K . In these ways, after three stages of screening
of the S = 3/2 impurity spin by three conduction channels
K = 3, a Kondo singlet is formed at the strong-coupling
regime. While the weak-coupling and intermediate-coupling
regimes can be understood in terms of well-known perturba-
tive results [18], the strong-coupling regime where all three
Kondo channels are at resonance contains most of the non-
trivial physics. Therefore, in the following, we develop the
transport description at the strong-coupling regime of the 3SK
impurity based on a local Fermi-liquid theory.

Scattering theory and conductance matrix. We describe
the transport at the strong-coupling regime of the 3SK effect
by the celebrated Nozières FL theory [2] which allows us to
express all of the scattering effect in terms of three scattering
phase shifts δaσ corresponding to three screening channels per
spin projection σ . The idea is to write the scattering matrix
Aσ = diag{e2iδaσ } for the three-terminal geometry a = 1, 2, 3
in the channel (rotated) diagonal basis as in Ref. [40]. From
the unitary operator U (ϕ) Eq. (7) and Aσ , one then forms
a scattering matrix characterizing the transport at the zero-
temperature limit,

S(ϕ) ≡ U†(ϕ)AσU (ϕ). (11)

The Landauer formula then expresses the conductance ele-
ments [41]

Gαα′ (ϕ) = e2

h

∑
σ

|Sαα′ (ϕ)|2, (12)

where e is the electron charge and h is the Planck’s constant.
Equation (12) results in the conductance elements defined in
the unit of G0 = 2e2/h as

G12 =
∑

σ

[
4A1 sin2 δ12σ +A2

2
sin2 δ23σ − 4A3 sin2 δ13σ

]
,

G13 = G23 = 8A3

∑
σ

sin2 δ13σ , δijσ ≡ δiσ − δjσ . (13)

The other elements of the conductance matrix are expressible
from the above presented elements by using the current con-
servation at each terminal and symmetry of the conductance
elements. In the last equation, we defined the ϕ dependent
factors Ai(ϕ),

A1 = 1

C2 + 4C + 12
, A2 = (C + 2)2A1, A3 = A1A2.

If all three channels are at resonance, the Friedel sum rule
guarantees that the corresponding phase shift becomes δiσ =
π/2. Equation (13) then accounts for the completely destruc-
tive interference among three resonance channels, thereby
vanishing the conductance elements. At finite Zeeman field B,
the phase shift deviates from the unitary limit. The effects of
finite B � T o2

K on the conductances are accounted for by the
phase shift expansion based on the Nozières FL theory [2,42–
44],

δaσ = π

2
− σαaB, αa � 1

T a
K

. (14)

The last equation provides the conductance element G12 (in
the unit of G0) of the 3SK effect as

G12(ϕ, B) = 8A1

(
B

T e
K

− B

T o1
K

)2

+ A2

(
B

T o1
K

− B

T o2
K

)2

− 8A3

(
B

T e
K

− B

T o2
K

)2

, (15)

and similarly for other conductance and reflectance elements.
All the features of two-stage and single-stage Kondo effects
can be directly seen from Eq. (15). Namely, for ϕ = 0, the
phase dependent parameter C(ϕ = 0) = 0 and only the Kondo
temperature of the even mode is nonzero T e

K �= 0. This de-
scribes the S = 1/2 Kondo impurity in 3T geometry with all
the conductance elements being equal, Gαα′ = 4(B/T e

K )2/9.
Straightforward tuning of ϕ also results in T e,o1

K �= 0 with
T o2

K = 0, which fully recovers the properties of two-stage
Kondo effects.

The parallel configuration of higher-spin Kondo effects in
multiterminal geometry results in just the additive contribu-
tion to the conductance G3SK parallel = 6e2/h, and the corre-
sponding series setups are very different with G3SK series =∑

a �=a′ Laa′ [αa(ϕ) − αa′ (ϕ)]2B2. The factors Laa′ are tunable
either by phase ϕ or by tunneling asymmetry. We note that
the naive expectation of conductance for 3SK effects, G3SK =
const

∑
a �=a′ [αa − αa′]2B2, is no longer correct, where the con-

sistent description must find Laa′ (ϕ) and αa(ϕ) carefully as
we presented earlier. The calculation at finite temperature and
voltage should be performed based on the low-energy FL
Hamiltonian presented in SM [35] (which is left for future
work).
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The intermediate- and weak-coupling regimes of 3SK
can be studied straightforwardly with the help of the above
presented results and the well-known logarithmic decay of
conductance at the weak-coupling regime [37]. Namely, re-
placing the phase shifts appearing in our expression of
conductance elements by [33]

δa(B) =
{

const S
ln (B/T a

K ) , B � T a
K ,

const
[
1 − S

ln (T a
K /B)

]
, B � T a

K ,
(16)

provides full access to uncover the transport descriptions at
the intermediate- and weak-coupling regimes. All the features
of 2SK and 1SK effects are thus captured by the 3SK model
presented here, in addition to providing different insights on
the Kondo paradigm associated with high-spin states. There-
fore, the independent control of interfering Kondo channels
and their interplay with each other might provide an effective
way of using the 3SK setup as a quantum interferometer
(further details have been presented in SM).

Summary. We presented a simple description of the mul-
tistage Kondo effect in multiterminal geometry based on
the Nozières Fermi-liquid theory. The studied framework
describes intrinsically multiterminal effects and allows for
a precise discrimination between different configurations of
the electron states. This provides an access to very rich
physics beyond the commonly studied two-terminal and one-
or two-mode Kondo screening. We uncovered various, albeit

simple, ways of fine-tuning the multiresonant Kondo channels
and their interplay with each other in order to observe the
constructive/destructive interference in the simplest possible
setup. This minimal setup of the three-stage Kondo effect can
be used as a quantum interferometer which also contains all
the physics associated with the two-terminal Kondo paradigm
and at the same time allows a straightforward generaliza-
tion to other numbers of stages. The developed framework
provides a controllable way to construct a desired realiza-
tion of the Kondo effect with a particular number of stages,
terminals, and channels from combinations of elementary
“building blocks,” conceptually alike to making complicated
constructions from simple blocks (consequently referred to
as a modular quantum interferometer—see Fig. 1). The stud-
ied transport observables are within the reach of existing
experimental setups, such as of the recent experiment on
2SK effects [7]. Therefore, we believe that the presented
ideas would motivate further experiments as well as theo-
retical works to uncover the Kondo paradigm with high-spin
states.
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